人工智能 | 计算机视觉 | 深度学习

0%

PCL系列——三维重构之移动立方体算法

PCL系列

说明

通过本教程,我们将会学会:

  • 如果通过移动立方体算法进行三维点云重构。
  • 程序支持两种文件格式:*.pcd*.ply
  • 程序先读取点云文件;然后计算法向量,并将法向量和点云坐标放在一起;接着使用移动立方体算法进行重构,最后显示结果。

操作

  • 在VS2010 中新建一个文件 recon_marchingCubes.cpp,然后将下面的代码复制到文件中。
  • 参照之前的文章,配置项目的属性。设置包含目录和库目录和附加依赖项。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/features/normal_3d.h>
#include <pcl/surface/marching_cubes_hoppe.h>
#include <pcl/surface/marching_cubes_rbf.h>
#include <pcl/surface/gp3.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <string>

int main (int argc, char** argv)
{
// 确定文件格式
char tmpStr[100];
strcpy(tmpStr,argv[1]);
char* pext = strrchr(tmpStr, '.');
std::string extply("ply");
std::string extpcd("pcd");
if(pext){
*pext='\0';
pext++;
}
std::string ext(pext);
//如果不支持文件格式,退出程序
if (!((ext == extply)||(ext == extpcd))){
std::cout << "文件格式不支持!" << std::endl;
std::cout << "支持文件格式:*.pcd和*.ply!" << std::endl;
return(-1);
}

//根据文件格式选择输入方式
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>) ; //创建点云对象指针,用于存储输入
if (ext == extply){
if (pcl::io::loadPLYFile(argv[1] , *cloud) == -1){
PCL_ERROR("Could not read ply file!\n") ;
return -1;
}
}
else{
if (pcl::io::loadPCDFile(argv[1] , *cloud) == -1){
PCL_ERROR("Could not read pcd file!\n") ;
return -1;
}
}

// 估计法向量
pcl::NormalEstimation<pcl::PointXYZ, pcl::Normal> n;
pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal>);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>);
tree->setInputCloud(cloud);
n.setInputCloud(cloud);
n.setSearchMethod(tree);
n.setKSearch(20);
n.compute (*normals); //计算法线,结果存储在normals中
//* normals 不能同时包含点的法向量和表面的曲率

//将点云和法线放到一起
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_normals (new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields (*cloud, *normals, *cloud_with_normals);
//* cloud_with_normals = cloud + normals


//创建搜索树
pcl::search::KdTree<pcl::PointNormal>::Ptr tree2 (new pcl::search::KdTree<pcl::PointNormal>);
tree2->setInputCloud (cloud_with_normals);

//初始化MarchingCubes对象,并设置参数
pcl::MarchingCubes<pcl::PointNormal> *mc;
mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
/*
if (hoppe_or_rbf == 0)
mc = new pcl::MarchingCubesHoppe<pcl::PointNormal> ();
else
{
mc = new pcl::MarchingCubesRBF<pcl::PointNormal> ();
(reinterpret_cast<pcl::MarchingCubesRBF<pcl::PointNormal>*> (mc))->setOffSurfaceDisplacement (off_surface_displacement);
}
*/

//创建多变形网格,用于存储结果
pcl::PolygonMesh mesh;

//设置MarchingCubes对象的参数
mc->setIsoLevel (0.0f);
mc->setGridResolution (50, 50, 50);
mc->setPercentageExtendGrid (0.0f);

//设置搜索方法
mc->setInputCloud (cloud_with_normals);

//执行重构,结果保存在mesh中
mc->reconstruct (mesh);

//保存网格图
pcl::io::savePLYFile("result.ply", mesh);

// 显示结果图
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer (new pcl::visualization::PCLVisualizer ("3D Viewer"));
viewer->setBackgroundColor (0, 0, 0); //设置背景
viewer->addPolygonMesh(mesh,"my"); //设置显示的网格
viewer->addCoordinateSystem (1.0); //设置坐标系
viewer->initCameraParameters ();
while (!viewer->wasStopped ()){
viewer->spinOnce (100);
boost::this_thread::sleep (boost::posix_time::microseconds (100000));
}

return (0);
}
  • 重新生成项目。
  • 到改项目的Debug目录下,按住Shift,同时点击鼠标右键,在当前窗口打开CMD窗口。
  • 在命令行中输入recon_marchingCubes.exe bunny.points.ply,执行程序。得到如下图所示的结果。

移动立方体算法的结果